Определение моды и медианы
По данным таблицы рассчитаем моду и медиану
Интервалы |
Диапазон по продолжительности жизни |
Число стран (частота), f |
Накопленная частота, f |
1 |
60,8 — 63,53 |
6 |
6 |
2 |
63,53 – 66,25 |
13 |
19 |
3 |
66,25 – 68,98 |
12 |
31 |
4 |
68,98 – 71,70 |
18 |
49 |
5 |
71,70 — 74,43 |
37 |
86 |
6 |
74,43 — 77,15 |
22 |
108 |
7 |
77,15 — 79,88 |
27 |
135 |
8 |
79,88 — 82,60 |
15 |
150 |
Определение моды
Интервал, имеющий наибольшую частоту, будет являться модальным, а конкретное (дискретное) значение моды будет находиться внутри него. Рассчитать конкретное, значение моды в интервальном ряду можно по следующей формуле:
где: ХМо — нижняя граница модального интервала,
i — длина модального интервала,
fMo — частота модального интервала,
fMo-1 — частота, соответствующая предшествующему интервалу,
fMo+1 — частота, соответствующая последующему интервалу.
Самая большая частота, 37 стран, соответствует варианту 71,70 — 74,43. Этот интервал является модальным.
Определение медианы
Медиана применяется для количественной характеристики структуры и равна такому варианту, который делит ранжированную совокупность на две равные части. У одной половины совокупности признаки не больше медианы (меньше или равны), у второй — не меньше медианы (больше или равны).
Если рассматриваемый ряд интервальный, то накопленные частоты покажут нам медианный интервал. Конкретное значение медианы рассчитывается по формуле:
i — длина медианного интервала,
сумма f — сумма частот ряда (объем совокупности),
f’Me-1 — накопленная частота в интервале, предшествующем медианному,
fMe — частота медианного интервала.
Для нахождения медианного интервала нужно знать половину частот, то есть 150 : 2 = 75. В столбце «накопленные частоты» выбираем 5 интервал, так как в 4 интервале частот накопилось еще 49 стран — меньше половины. С помощью формулы найдем конкретное значение медианы, оно принадлежит медианному интервалу 71,70 — 74,43.
Разница между 74,14 и 73,61 говорит об умеренном асимметричном распределении
Заказать задачи по статистике Вы можете на странице https://univer-nn.ru/zadachi-po-statistike-primeri/