Средняя геометрическая в статистике

Понятие средней геометрической

Средняя геометрическая применяется в тех случаях, когда индивидуальные значения признака представляют собой относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики, т. е. характеризует средний коэффициент роста.

В контрольных по статистике она исчисляется извлечением корня степени n из произведений отдельных значений — вариантов признака Х по формуле:

формула средней геометрической

где П — оператор умножения, знак произведения;
n — число вариантов.

Средняя геометрическая в частности рассчитывается тогда, когда данные даны в процентах.

Рассчитаем среднюю величину инфляции

Исходные данные взяты из справочника «Краткосрочные экономические показатели Российской Федерации за 2012 г.». Сайт www.gks.ru

год квартал Индекс потребительских цен, y
2008 1 104,8
2 103,8
3 101,7
4 102,5
2009 1 105,4
2 101,9
3 100,6
4 100,7
2010 1 103,2
2 101,2
3 101,8
4 102,4
2011 1 103,8
2 101,1
3 99,7
4 101,4


Среднемесячный индекс потребительских цен определяется по формуле средней геометрической, т.к. в основе расчета лежит индекс. Перемножим данные и разделим на число кварталов за 4 года:

расчет средней инфляции

Вывод: в период с 2008 по 2011 года средний квартальный прирост инфляции составил 2,24%

Средняя гармоническая

Определяющее свойство средней гармонической заключается в том, чтобы при осреднении оставалась неизменной сумма величин, обратных осредняемым.

Формула средней геометрической взвешенной применяется в тех случаях, когда статистическая информация не содержит частот f по отдельным вариантам х совокупности и представлена как их произведение xf. Для того чтобы исчислить среднюю геометрическую, необходимо обозначить: xf = w, откуда f = w/x.

Преобразуем формулу средней арифметической так, чтобы по имеющимся данным х и w можно было вычислить среднюю. В формулу средней арифметической взвешенной вместо xn подставим w, а вместо n — отношение w/x и таким образом получим формулу средней гармонической взвешенной:

формула средней гармонической

Средняя гармоническая простая применяется в тогда, когда вес каждого варианта равен единице. Она вычисляется по формуле:

Средняя гармоническая простая

где 1/x — отдельные варианты обратного признака, встречающиеся по одному разу;

n — число вариантов.

Средняя квадратичная

Средняя квадратичная применяется, например, для вычисления средней величины сторон n квадратных участков, средних диаметров стволов, труб и т. д. Она подразделяется на два вида.

Средняя квадратичная простая. Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин, то средняя будет являться квадратичной средней величиной.

Она является квадратным корнем из частного от деления суммы квадратов отдельных значений признака на их число:

формула средней квадратичной

Средняя квадратичная взвешенная вычисляется по формуле:

Средняя квадратичная взвешенная

где f — признак веса.

Средняя кубическая

Средняя кубическая применяется, например, при определении средней длины стороны и кубов. Она подразделяется на два вида.
Средняя кубическая простая:

формула средней кубической

Средняя кубическая взвешенная:

Средняя кубическая взвешенная

Средняя квадратическая и средняя кубическая имеют неширокое применение в практической статистике. Часто в статистике используют среднюю квадратическую, но не из самих факторов х, и из их отклонений от средней при расчете показателей вариации.

Средняя может быть рассчитана не для всей, а для какой-либо части данных совокупности. Примером может быть средняя прогрессивная как одна из частных средних, рассчитанная не для всех, а только для «лучших» (например, для показателей выше или ниже средних индивидуальных).

Структурные средние

Для характеристики центральной тенденции в статистических распределениях рационально вместе со средней арифметической использовать некое значение признака X, которое в силу определенных особенностей расположения в ряду распределения может характеризовать его уровень.

Это особенно важно тогда, когда в ряду распределения крайние значения признака имеют нечеткие границы. В связи с этим точное определение средней арифметической, как правило, невозможно, либо очень сложно. В таких случаях средний уровень можно определить, взяв, например, значение признака, которое расположено в середине ряда частот или которое чаще всего встречается в текущем ряду.

Такие значения зависят только от характера частот т. е. от структуры распределения. Они типичны по месту расположения в ряду частот, поэтому такие значения рассматриваются в качестве характеристик центра распределения и поэтому получили определение структурных средних.
Они применяются для изучения внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся мода и медиана.

Мода и медиана очень часто рассчитывают в задачах статистики и они являются дополнительными к средней характеристиками совокупности и используются в математической статистике для анализа типа рядов распределения, которое может нормальным, асимметричным, симметричным и т.д.

Также как и медиану вычисляются значения признака, делящего совокупность на четыре равные части — квартели, на пять частей — квинтели, на десять равных частей — децели, на сто равных частей — перцентели. Использование при анализе вариационных рядов распределения рассмотренных характеристик в статистике позволяет более глубоко и детально охарактеризовать изучаемую совокупность.

Источник: Балинова B.C. Статистика в вопросах и ответах: Учеб. пособие. — М.: ТК. Велби, Изд-во Проспект, 2004. — 344 с.

Примеры работ

Материалы сайта

Обращаем Ваше внимание на то, что все материалы опубликованы для образовательных целей.