Лекции по дисциплинам

Понятие производной, ее геометрический и физический смысл

Перед прочтением информации на текущей странице советуем посмотреть видео о производной и её геометрическом смысле

Также смотрите пример вычисления производной в точке

Касательной к линии l в точке М0 называется прямая М0Т - предельное положение секущей М0М, когда точка М стремится к М0 вдоль данной линии (т. е. угол устремится к нулю) произвольным образом.

График производной

Производной функции у = f{x) в точке x0 называется предел отношения приращения этой функции к приращению аргумента, когда последнее стремится к нулю. Производную функции у = f{x) в точке х0 в контрольных по математике и учебниках обозначают символом f'(x0). Следовательно, по определению

уравнение производной

Термин «производная» (а также «вторая производная») ввел Ж. Лагранж (1797), к тому же он дал обозначения y’, f’(x), f”(x) (1770,1779). Обозначение dy/dx впервые встречается у Лейбница (1675).

Геометрический смысл производной

.

Производная функции y = f(х) при х = xо равна угловому коэффициенту касательной к графику данной функции в точке Мо(хо, f(xо)), т. е.

уравнение производной через тангенс

где а — угол наклона касательной к оси Ох прямоугольной декартовой системы координат.

Геометрический смысл производной

Уравнение касательной к линии у = f(x) в точке Мо(хо, уо ) принимает вид

уравнение касательной

Нормалью к кривой в некоторой ее точке называется перпендикуляр к касательной в той же точке. Если f(x0) не равно 0, то уравнение нормали к линии у = f(x) в точке Мо(хо, уо) запишется так:

уравнение нормали

Физический смысл производной

Если x = f(t) - закон прямолинейного движения точки, то x’ = f’(t) — скорость этого движения в момент времени t. Быстрота протекания физических, химических и других процессов выражается с помощью производной.

Если отношение dy/dх при х->х0 имеет предел справа (или слева), то он называется производной справа (соответственно производной слева). Такие пределы называются односторонними производными.

производная слева
производная спарва

Очевидно, функция f{x) определенная в некоторой окрестности точки х0, имеет производную f’{x) тогда и только тогда, когда односторонние производные существуют и равны между собой.

Геометрическое истолкование производной как углового коэффициента касательной к графику распространяется и на этот случай: касательная в данном случае параллельна оси Оу.

Функция, имеющая производную в данной точке, называется дифференцируемой в этой точке. Функция, имеющая производную в каждой точке данного промежутка, называется дифференцируемой в этом промежутке. Если промежуток является замкнутым, то на концах его имеются односторонние производные.

Операция нахождения производной называется дифференцированием.

Еще о производных:

Основные правила дифференцирования
Основные формулы дифференцирования
Свойства дифференциала