ВАРИАНТ 6

Задача 1.

Таблица 6.1.

$N_{\bar{0}} \Pi / \Pi$	Количество	Средний балл по	No π/π	Количество	Средний балл
	пропущенных	всем предметам		пропущенных	по всем
	обязательных занятии,			обязательных	предметам
	Ч.			занятии, ч.	
1	38	3,8	16	24	4,3
2	0	4,8	17	16	4,7
3	6	5,0	18	24	4,2
4	26	3,7	19	34	3,8
5	18	3,4	20	56	3,0
6	56	3,0	21	4	5,0
7	28	4,1	22	2	3,6
8	35	3,9	23	38	4,0
9	14	4,6	24	54	3,2
10	32	3,9	25	16	4.5
11	12	5,0	26	14	4,2
12	38	3,9	27	12	4.7
13	10	4,6	28	36	3.9
14	54	3,5	29	52	3,4
15	48	3,2	30	60	3,3

Для изучения зависимости между количеством пропущенных занятий и успеваемостью произведете группировку студентов по успеваемости, образовав пять групп студентов с равными интервалами.

По каждой группе и по совокупности в целом подсчитайте:

- 1. число студентов;
- 2. средний балл успеваемости;
- 3. среднее число пропущенных обязательных занятий.

Результаты представьте в таблице.

Дайте анализ показателей таблицы и сделайте краткие выводы

Определяем шаг интервала:

$$h = \frac{x_{\text{max}} - x_{\text{min}}}{n}$$

 x_{\max}, x_{\min} - максимальное и минимальное значение

n – число групп

$$h = \frac{5-3}{5} = 0.4$$

Произведем группировку с равными интервалами

	Диапазон по	число	Количество пропущенных
Интервалы	баллам	студентов, f	обязательных занятии, ч., n
1	3 – 3,4	7	344
2	3,4-3,8	5	154
3	3,8 – 4,2	8	245
4	4,2 – 4,6	4	64
5	4,6 - 5	6	50
Итого		30	513

Рассчитаем средний балл успеваемости;

$$\bar{x} = \frac{\sum x' f_i}{\sum f_i}$$

x' - середина интервала диапазона баллов

Составим расчетную таблицу

	Диапазон по				
Интервалы	баллам	x'	f	x'f	n
1	3 – 3,4	3,2	7	22,4	344
2	3,4-3,8	3,6	5	18	154
3	3,8 – 4,2	4	8	32	245
4	4,2 – 4,6	4,4	4	17,6	64
5	4,6 - 5	4,8	6	28,8	50
Итого			30	118,8	857

$$\bar{x} = \frac{118,8}{30} = 3,96$$
 баллов

Рассчитаем число пропущенных обязательных занятий.

Задача 2.

Имеются следующие данные:

Таблица 6.2.

Группы рабочих по	Число	Выпуск
стажу работы, лет	рабочих, в	продукции, в %
	% к итогу.	к итогу
3-5	5	6
5-6	7	8
6-8	10	12
8-10	15	17
10-15	20	20
15-18	23	23
18-20	10	10
20-25	10	4
Итого:	100	100

Используя метод вторичной группировки, образуйте следующие группы рабочих по стажу работы: 3-7, 7-10, 10-16, 16-20, 20-25. По каждой группе рассчитайте оба показателя

В интервал 3-7 входят интервалы: 3-5, 5-6, 6-8. Т.к. 7 приходится на середину интервала, поэтому в интервал 3-7 попадет 10:2=5% рабочих и 12:2=6% выпуска продукции.

Логика группировки по другим интервалам аналогична. Если новая группа охватывает весь интервал, то значение показателя распределяем пропорционально.

Группы рабочих по	Число	Выпуск
стажу работы, лет	рабочих, в	продукции, в %
	% к итогу.	к итогу.
3-7	17	20
7-10	20	23
10-16	27,67	27,67
16-20	25,33	25,33
20-25	10	4
Итого:	100	100

Задача 3.

Имеются следующие данные по фермерским хозяйствам области:

Таблица 6.3.

Группы хозяйств по себестоимости 1 ц. /	Число	Валовой сбор в среднем на 1
сахарной свеклы, руб	хозяйств, f	хозяйство, ц., q
До 24	30	110,5
24-26	60	90,0
26-28	120	114,8
28 и более	20	130,0

Определите среднюю себестоимость 1ц. свеклы в целом по фермерским хозяйствам области.

Рассчитаем среднюю себестоимость по формуле средней арифметической взвешенной

$$\overline{x} = \frac{\sum x' f_i}{\sum f_i}$$

x' - середина интервала групп хозяйств по себестоимости

Составим расчетную таблицу

Группы хозяйств по себестоимости 1 ц. /	x'	f	x'f
сахарной свеклы, руб			
До 24	23	30	690
24-26	25	60	1500
26-28	27	120	3240
28 и более	29	20	580
Сумма		230	6010

$$\frac{1}{x} = \frac{6010}{230} = 26,13$$
 (1ц. / сахарной свеклы, руб)

Также себестоимость можно взвесить по валовому сбору

Группы хозяйств по себестоимости 1 ц. /	x'	q	x'q
сахарной свеклы, руб			
До 24	23	110,5	2541,5
24-26	25	90	2250
26-28	27	114,8	3099,6
28 и более	29	130	3770
Сумма		445,3	11661,1

$$\overline{x} = \frac{11661,1}{445,3} = 26,19$$
 (1ц. / сахарной свеклы, руб)

Задача 4.

Имеются следующие данные о распределении работников предприятия по уровню месячной заработной платы:

Таблица 6.4.

Заработная	800	800- 1100	1100-	1400-	1700-	Свыше	Сумма
плата одного			1400	1700	2000	2000	
рабочего за							
март, руб.							
Число	5	10	12	50	20	3	100
рабочих,							
чел., f							
X_i '	650	950	1250	1550	1850	2150	
X_i ' f_i	3250	9500	15000	77500	37000	6450	148700
$(X_i' - \overline{X})^2 f_i$	3502845	2883690	674028	198450	2635380	1318707	11213100
$(X_i' - \overline{X})^3 f_i$	-2931881265	-1548541530	-159744636	12502350	956642940	874302741	-2796719400
$(X_i' - \overline{X})^4 f$	2453984618805	831566801610	37859478732	787648050	347261387220	579662717283	4251122651700

Определите показатели закономерности рядов распределения: асимметрии и эксцесса. Покажите схематично кривую распределения. Сделайте выводы.

Определим среднюю заработную плату

$$\overline{X} = \frac{\sum X_i' f_i}{\sum f_i} = \frac{148700}{100} 1487$$
 py6.

 X_i ' - середина интервала

Определим среднее квадратическое отклонение

$$\sigma = \sqrt{\frac{\sum (X_i' - \overline{X})^2 f_i}{\sum f_i}}$$

$$\sigma = \sqrt{\frac{11213100}{100}} = 334,86$$

Определим коэффициент асимметрии:

$$As = \frac{\mu_3}{\sigma^3}$$

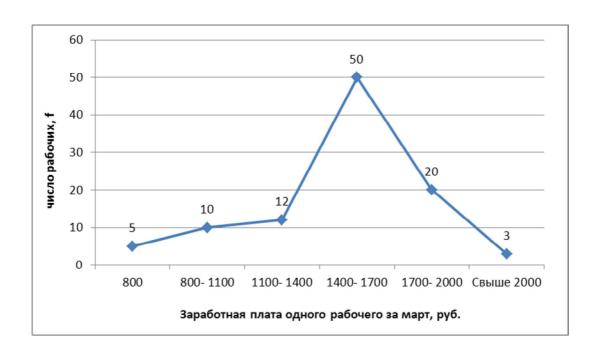
где - третий момент распределения

$$\mu_3 = \frac{\sum (X_i' - \overline{X})^3 f_i}{\sum f_i} = \frac{-2796719400}{100} = -27967194$$

$$As = \frac{\mu_3}{\sigma^3} = \frac{-27967194}{334,86^3} = -74,48$$

 $T.к. \ As < 0 \ и \$ значение коэффициента достаточно велико, то присутствует значительная левосторонняя асимметрия.

Рассчитаем коэффициент эксцесса:


$$Ex = \frac{\mu_4}{\sigma^4} - 3,$$

$$\mu_4 = \frac{\sum (X_i' - \overline{X})^4 f_i}{\sum f_i} = \frac{4251122651700}{100} = 42511226517$$

$$Ex = \frac{42511226517}{334,86^4} - 3 = 335,11$$

Когда распределение островершинное по отношению к нормальному, эксцесс положительный. (Для нормального распределения ${\rm E}=0$.)

Строим кривую распределения

Задача 5.

Имеются показатели распределения основных фондов по промышленным предприятиям региона:

Таблица 6.5.

Группы предприятий по	Число	Основные фонды в	Групповые дисперсии.
стоимости основных	предприятий	среднем на	
фондов, млн, руб.		одно предприятие,	
		млн. руб.	
1,2-2,7	9	1,8	0,17
2,7-4,2	11	3,2	0,09
4,2-5,7	7	4,8	0,25
5,7-7,2	3	6,9	0,14

Определите:

- 1. общую дисперсию основных фондов по совокупности предприятий, применяя правила сложения дисперсий;
 - 2. коэффициент детерминации;
 - 3. эмпирическое корреляционное отношение;
 - 4. коэффициент вариации, рассчитанный по всей совокупности.

Сделайте вывод.

Общая дисперсия определяется по формуле:

$$\sigma^2 = \frac{\sum (X_i - \overline{X})^2 f_i}{\sum f_i}$$

где
$$\overline{X} = \frac{\sum X_i f_i}{\sum f_i}$$

Составим расчетную таблицу

Группировка фирм по стоимости основных фондов, млн. руб.	f	X	Xf	$(X_i - \overline{X})^2 f_i$	Групповые дисперсии	$\sigma_i^2 f_i$
1,2 - 2,7	9	1,8	16,2	26,729	0,17	1,53
2,7 - 4,2	11	3,2	35,2	1,150	0,09	0,99
4,2 - 5,7	7	4,8	33,6	11,409	0,25	1,75
5,7 – 7,2	3	6,9	20,7	34,206	0,14	0,42
Сумма	30		105,7	73,494		4,69

$$\overline{X} = \frac{105,7}{30} = 3,523$$
 млн. руб.
$$\sigma^2 = \frac{73,494}{30} = 2,45$$
 млн. руб.

По правилу сложения дисперсий общая дисперсия равна

$$\sigma^2 = \overline{\sigma}_i^2 + \delta^2$$

 σ_i^{-2} где σ_i^{-2} - средняя внутригрупповая дисперсия

 δ^2 - межгрупповая дисперсия

$$\delta^2 = \sigma^2 - \overline{\sigma}_i^2$$

Средняя внутригрупповая дисперсия рассчитывается по формуле

$$\frac{-2}{\sigma_i} = \frac{\sum \sigma_i^2 f_i}{\sum f_i}$$

где fi - число единиц в группе

Эмпирическое корреляционное отношение определяется по формуле

$$\eta = \sqrt{\frac{\delta^2}{\sigma^2}}$$

где σ^2 - общая дисперсия

 δ^2 - межгрупповая дисперсия

$$\sigma_i^2 = \frac{4,69}{30} = 0,156$$
 млн. руб.
$$\delta^2 = \sigma^2 - \overline{\sigma}_i^2 = 2,45 - 0,156 = 2,29$$
 млн. руб.
$$\eta = \sqrt{\frac{2,29}{2.45}} = 0,968$$

Коэффициент детерминации составит

$$\eta^2 = \frac{2,29}{2,45} = 0,935$$

Коэффициент вариации:

$$V = \frac{\sigma}{\overline{X}} = \frac{\sqrt{2,45}}{3,523} = 0,444$$

Совокупность нельзя считать однородной, т.к. коэффициент вариации больше 0,33 (33%)

Задача 6.

Списочная численность работников фирмы составила на 1-е число месяца, чел:

Исчислите статистические показатели ряда динамики.

Средняя списочная численность работников рассчитывается по средней хронологической:

$$\overline{X} = \frac{0.5X_1 + X_2 + \dots + X_n + 0.5X_{n+1}}{n-1}$$

$$\overline{X} = \frac{0.5 \cdot 349 + 350 + 351 + \dots + 359 + 355 + 0.5 \cdot 360}{13 - 1} = 3524e\pi.$$

Для решения задачи построим расчетную таблицу:

Дата	у	Δy	Δy	T	T	T	T	Абс.1%
		баз	цепн	р баз	рцепн	пр баз	прцепн	
01.01	349	-	-	-	-	-	-	-
01.02	350	1	1	100,29%	100,29%	0,29%	0,29%	3,49
01.03	351	2	1	100,57%	100,29%	0,57%	0,29%	3,5
01.04	352	3	1	100,86%	100,28%	0,86%	0,28%	3,51
01.05	345	-4	-7	98,85%	98,01%	-1,15%	-1,99%	3,52
01.06	349	0	4	100,00%	101,16%	0,00%	1,16%	3,45
01.07	352	3	3	100,86%	100,86%	0,86%	0,86%	3,49
01.08	355	6	3	101,72%	100,85%	1,72%	0,85%	3,52
01.09	350	1	-5	100,29%	98,59%	0,29%	-1,41%	3,55
01.10	352	3	2	100,86%	100,57%	0,86%	0,57%	3,5
01.11	359	10	7	102,87%	101,99%	2,87%	1,99%	3,52
01.12	355	6	-4	101,72%	98,89%	1,72%	-1,11%	3,59
01.01.99	360	11	5	103,15%	101,41%	3,15%	1,41%	3,55

Показатели динамики (цепные, базисные) рассчитваются по формулам

$$\Delta y = y - y$$
, $\Delta y = y - y$, Δy

Абсолютное значение 1% прироста

$$A = \frac{\Delta y_{uenh}}{T_{np uenh}} = 0.01 y_{i-1}$$

Определим среднемесячный темп роста и прироста за год, средний абсолютный прирост

$$\overline{T}_p = \sqrt[n-1]{\frac{y_n}{y_1}} \times 100 = \sqrt[12]{\frac{360}{349}} \times 100 = 100,26\%$$

$$\overline{T}_{np} = \overline{T}_p - 100\% = 100,26\% - 100\% = 0,26\%$$

Средняя списочная численность работников каждый год увеличивалась на 0,26%

$$\overline{\Delta y} = \frac{y_n - y_1}{n - 1} = \frac{360 - 349}{12} = 0.917$$
/чел.

Задача 7.

Из партии в 1 млн. шт. мелкокалиберных патронов путем случайного отбора взято для определения дальнобойности боя 1000 шт. Результаты испытаний представлены в следующей таблице:

Таблица 6.6.

Дальность боя, м., X	25	30	35	40	45	50	Итого
Число патронов, шт., f	110	190	270	180	150	100	1000

С вероятностью 0,954 определите среднюю дальность боя по выборке, ошибку выборки и возможные пределы средней дальности боя для всей партии патронов.

Строим вспомогательную таблицу:

X_i	f_i	$X_i f_i$	$(X_i - \overline{X})^2$
25	110	2750	23447,6
30	190	5700	17510,4
35	270	9450	5713,2
40	180	7200	28,8
45	150	6750	4374
50	100	5000	10816
25	110	2750	23447,6
Сумма	1000	39600	85337,6

Рассчитаем среднюю дальность боя:

$$\overline{X} = \frac{\sum X_i f_i}{\sum f_i} = \frac{39600}{1000} = 39,6$$
M

Средняя ошибка выборки определяется по формуле:

$$\mu_x = \sqrt{\frac{{\delta_x}^2}{\sum f} \times \left(1 - \frac{n}{N}\right)}$$

N – объем генеральной совокупности

Дисперсия определяется по формуле:

$$\delta_x^2 = \frac{\sum (X'_i - \overline{X})^2}{f_i} = \frac{85337.6}{1000} = 85.34$$

$$\mu_x = \sqrt{\frac{85,34}{1000} \times \left(1 - \frac{1000}{1000000}\right)} = 0,29 \text{ M}$$

Предельная ошибка выборки определяется по формуле:

$$\Delta_{\rm v} = {\rm t} \times \mu_{\rm v}$$

Для вероятности 0,954 t=2 (коэффициент доверия)

$$\Delta_x = 2 \times 0.29 = 0.58 \,\mathrm{M}$$

С вероятностью 0,954 средняя дальность боя по выборке будет находится в пределах

$$39,6-0,58 \le \overline{X} \le 39,6+0,58$$

 $39,02 \le \overline{X} \le 40,18 \,\mathrm{m}$

Задача 8.

Имеются следующие данные по двум отделам предприятия

Таблица 6.7.

Отдел	Среднемесяч	ная зарплата	Списочная средняя численность		
	одного работника тыс. руб.		работников, чел.		
	Базисный	Отчетный	Базисный период	Отчетный период	
	период, 3_0	период, 3_1	\overline{N}_0	\overline{N}_1	
1	1720,0	1760,0	10	12	
2	1890,0	1910,9	20	25	
Сумма			30	37	

Вычислите:

- Индекс среднемесячной зарплаты переменного состава;
- Индекс среднемесячной зарплаты постоянного состава;
- Индекс влияния структурных сдвигов.
- Индекс производительности труда переменного состава определяется по формуле

$$I^{IIC} = \frac{\sum 3_1 \overline{N}_1}{\sum \overline{N}_1} \div \frac{\sum 3_0 \overline{N}_0}{\sum \overline{N}_0}$$

- Индекс производительности труда постоянного (фиксированного) состава определяется по формуле

$$I^{\Phi C} = \frac{\sum 3_1 \overline{N}_1}{\sum \overline{N}_1} \div \frac{\sum 3_0 \overline{N}_1}{\sum \overline{N}_1}$$

- Индекс структурных сдвигов определяется по формуле

$$I^{cc} = \frac{\sum 3_0 \overline{N}_1}{\sum \overline{N}_1} \div \frac{\sum 3_0 \overline{N}_0}{\sum \overline{N}_0}$$

Составим таблицу вспомогательных расчетов

Предприятие	Вспомогательные расчеты			
	$3_0 \overline{N}_1$	$3_1\overline{N}_1$	$3_{\scriptscriptstyle 0} \overline{N}_{\scriptscriptstyle 0}$	
1	20640	21120	17200	
2	47250	47772,5	37800	
Сумма	67890	68892,5	55000	

$$I^{PC} = \frac{68892,5}{37} \div \frac{55000}{30} = 1,016$$

$$I^{\Phi C} = \frac{68892,5}{37} \div \frac{67890}{37} = 1,015$$

$$I^{CC} = \frac{67890}{37} \div \frac{55000}{30} = 1,001$$

Покажем взаимосвязь исчисленных индексов

$$I^{nc} = I^{\phi c} \times I^{cc}$$

 $1,016 = 1,015 \cdot 1,001$ - равенство выполняется, расчеты проведены верно

Задача 9.

Определите общий индекс физического объема товарооборота магазина в отчетном году при условии, что товарооборот прошлого года в 1,2 и 3 секция составлял соответственно 35, 25 и 8 млн. руб., а темпы прироста товарооборота в неизменных ценах составили соответственно 5, 8, 12%.

Определим товарооборот в текущем году

$$Q_1^1=35\cdot 1{,}05=36{,}75\,$$
 млн. руб.
$$Q_1^2=25\cdot 1{,}08=27\,$$
 млн. руб.
$$Q_1^3=8\cdot 1{,}12=8{,}96\,$$
 млн. руб.

Общий индекс физического объема товарооборота найдем по методу средних отношений базисных товарооборота к индивидуальным индексам количеств

$$I_{\overline{q}} = \frac{35 \cdot 1,05 + 25 \cdot 1,08 + 8 \cdot 1,12}{35 + 25 + 8} = 1,069$$

Физический объем товарооборота магазина в среднем по 3 секциям вырос на 6,9%

Задача 10.

Для изучения тесноты связи между количеством пропущенных занятий (факторный признак -X) и успеваемостью студентов (результативный признак -Y) по данным задачи 1 определите теоретическое корреляционное отношение и поясните его значение.

Составим расчетную таблицу

Nºπ/π	X	y	x^2	y^2	xy
1	38	3,8	1444	14,44	144,4
2	0	4,8	0	23,04	0
3	6	5	36	25	30
4	26	3,7	676	13,69	96,2
5	18	3,4	324	11,56	61,2
6	56	3	3136	9	168
7	28	4,1	784	16,81	114,8
8	35	3,9	1225	15,21	136,5
9	14	4,6	196	21,16	64,4
10	32	3,9	1024	15,21	124,8
11	12	5	144	25	60
12	38	3,9	1444	15,21	148,2
13	10	4,6	100	21,16	46
14	54	3,5	2916	12,25	189
15	48	3,2	2304	10,24	153,6
16	24	4,3	576	18,49	103,2
17	16	4,7	256	22,09	75,2
18	24	4,2	576	17,64	100,8
19	34	3,8	1156	14,44	129,2
20	56	3	3136	9	168
21	4	5	16	25	20
22	2	3,6	4	12,96	7,2
23	38	4	1444	16	152
24	54	3,2	2916	10,24	172,8
25	16	4,5	256	20,25	72
26	14	4,2	196	17,64	58,8
27	12	4,7	144	22,09	56,4
28	36	3,9	1296	15,21	140,4
29	52	3,4	2704	11,56	176,8
30	60	3,3	3600	10,89	198
Среднее	28,57	4,01	1134,30	16,42	105,60

Рассчитываем линейный коэффициент корреляции (теоретическое корреляционное отношение) по формуле:

$$r_{xy} = b \cdot \frac{\sigma_x}{\sigma_y}$$
 где $\sigma_x = \sqrt{\overline{x^2} - (\overline{x})^2}$
$$\sigma_y = \sqrt{\overline{y^2} - (\overline{y})^2}$$

$$b = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - (\overline{x})^2}$$
 - коэффициент линейного уравнения регрессии $y = a + b \cdot x$

$$b = \frac{105,60 - 28,57 \cdot 4,01}{1134,30 - 28,57^2} = -0,0278$$

$$\sigma_x = \sqrt{1134,30 - 28,57^2} = 17,84$$

$$\sigma_y = \sqrt{16,42 - 4,01^2} = 0,60$$

$$r_{xy} = -0,0278 \cdot \frac{17,84}{0,60} = -0,825$$

Эмпирическое корреляционное отношение больше 0,7 (по модулю) и показывает сильную связь между рассматриваемыми данными. Отрицательное значение коэффициента говорит об обратной связи между количеством пропущенных занятий и успеваемостью студентов.