Пример 3. Получены данные итоговой аттестации (оценки - в баллах) студентов одной из групп факультета:

5	5	4	4	5	5	5
2	4	4	3	5	4	4
3	5	5	5	3	2	4
3	4	5	4	5	3	5
2	2	4	5	3	3	5

Составим дискретный вариационный ряд распределения

Для дальнейших расчетов составим таблицу

	частота		
оценки, Х	(повторяемость), f	Xf	$(X_i - \overline{X})^2 f$
2	4	8	15,546
3	7	21	6,606
4	10	40	0,008
5	14	70	14,811
Итого	35	139	36,971

Средний уровень ряда (средний балл) рассчитываем по формуле средней взвешенной:

$$\overline{X} = \frac{\sum X_i f_i}{\sum f_i} = \frac{139}{35} = 3,97$$

Размах вариации равен:

$$R = X_{max} - X_{min} = 5 - 2 = 3$$
 балла

определяется по формуле

$$\delta^2 = \frac{\sum (X_i - \overline{X})^2 f_i}{\sum f_i} = \frac{36,971}{35} = 1,056$$

Среднее квадратическое отклонение составит:

$$\sigma = \sqrt{\delta^2} = \sqrt{1,056} = 1,0278$$

Коэффициент вариации определяется по формуле

$$V = \frac{\sigma}{\overline{X}} = \frac{1,0278}{3.97} = 0,2588$$
 или 25,88%

Вывод: Коэффициент вариации является критерием однородности совокупности. В нашем случае совокупность однородная, т.к. коэффициент вариации меньше $\frac{1}{3}$ или 33%